KELAHIRAN MEKANIKA KUANTUM

Dirangkum oleh: Fachturrizki R

a. Sifat gelombang partikel

Di paruh pertama abad 20, mulai diketahui bahwa gelombang elektromagnetik, yang sebelumnya dianggap gelombang murni, berperilaku seperti partikel (foton). Fisikawan Perancis Louis Victor De Broglie (1892-1987) mengasumsikan bahwa sebaliknya mungkin juga benar, yakni materi juga berperilaku seperti gelombang. Berawal dari persamaan Einstein, E = cp dengan p adalah momentum foton, c kecepatan cahaya dan E adalah energi, ia mendapatkan hubungan:

E = hν =ν = c/λ atau hc/ λ = E, maka h/ λ= p … (2.12)

Tabel 2.2 Panjang-gelombang gelombang materi.

partikel massa (g) kecepatan (cm s-1) Panjang gelombang (nm)
elektron (300K) 9,1×10-28 1,2×107 6,1
elektron at 1 V 9,1×10-28 5,9×107 0,12
elektron at 100 V 9,1×10-28 5,9×108 0,12
He atom 300K 6,6×10-24 1,4×105 0,071
Xe atom 300K 2,2×10-22 2,4×104 0,012


b. Prinsip ketidakpastian

Dari yang telah dipelajari tentang gelombang materi, kita dapat mengamati bahwa kehati-hatian harus diberikan bila teori dunia makroskopik akan diterapkan di dunia mikroskopik. Fisikawan Jerman Werner Karl Heisenberg (1901-1976) menyatakan tidak mungkin menentukan secara akurat posisi dan momentum secara simultan partikel yang sangat kecil semacam elektron. Untuk mengamati partikel, seseorang harus meradiasi partikel dengan cahaya. Tumbukan antara partikel dengan foton akan mengubah posisi dan momentum partikel.

Heisenberg menjelaskan bahwa hasil kali antara ketidakpastian posisi x dan ketidakpastian momentum p akan bernilai sekitar konstanta Planck:

xp = h (2.13)

Hubungan ini disebut dengan prinsip ketidakpastian Heisenberg.


c. Persamaan Schrödinger

Fisikawan Austria Erwin Schrödinger (1887-1961) mengusulkan ide bahwa persamaan De Broglie dapat diterapkan tidak hanya untuk gerakan bebas partikel, tetapi juga pada gerakan yang terikat seperti elektron dalam atom. Dengan memperuas ide ini, ia merumuskan sistem mekanika gelombang. Pada saat yang sama Heisenberg mengembangkan sistem mekanika matriks. Kemudian hari kedua sistem ini disatukan dalam mekanika kuantum.

Dalam mekanika kuantum, keadaan sistem dideskripsikan dengan fungsi gelombang. Schrödinger mendasarkan teorinya pada ide bahwa energi total sistem, E dapat diperkirakan dengan menyelesaikan persamaan. Karena persamaan ini memiliki kemiripan dengan persamaan yang mengungkapkan gelombang di fisika klasik, maka persamaan ini disebut dengan persamaan gelombang Schrödinger.

Persamaan gelombang partikel (misalnya elektron) yang bergerak dalam satu arah (misalnya arah x) diberikan oleh:

(-h2/8π2m)(d2Ψ/dx2) + VΨ = EΨ … (2.14)

m adalah massa elektron, V adalah energi potensial sistem sebagai fungsi koordinat, dan Ψ adalah fungsi gelombang.


ATOM MIRIP HIDROGEN

Dimungkinkan uintuk memperluas metoda yang digunakan dalam potensial kotak satu dimensi ini untuk menangani atom hidrogen dan atom mirip hidrogen secara umum. Untuk keperluan ini persamaan satu dimensi (2.14) harus diperluas menjadi persamaan tiga dimensi sebagai berikut:

(-h2/8π2m)Ψï¼»(∂2/∂x2) + (∂2/∂y2) +(∂2/∂z2)ï¼½+V(x, y, z)Ψ = EΨ … (2.19)

Bila didefinisikan ∇2 sebagai:(∂2/∂x2) + (∂2/∂y2) +(∂2/∂z2) = ∇2 … (2.20),,Maka persamaan Schrödinger tiga dimensi akan menjadi:

(-h2/8π2m)∇2Ψ +VΨ = EΨ … (2.21)atau 2Ψ +(8π 2m/h2)(E -V)Ψ = 0 … (2.22)

Energi potensial atom mirip hidrogen diberikan oleh persamaan berikut dengan Z adalah muatan listrik.

V = -Ze2/4πε0r … (2.23)

Bila anda substitusikan persamaan (2.23) ke persamaan (2.22), anda akan mendapatkan persamaan berikut.

2Ψ+(8π2m/h2)ï¼»E + (Ze2/4πε0r)ï¼½Ψ = 0 … (2.24)

Ringkasnya, penyelesaian persamaan ini untuk energi atom mirip hidrogen cocok dengan yang didapatkan dari teori Bohr.

BILANGAN KUANTUM

Karena elektron bergerak dalam tiga dimensi, tiga jenis bilangan kuantum (Bab 2.3(b)), bilangan kuantum utama, azimut, dan magnetik diperlukan untuk mengungkapkan fungsi gelombang. Dalam Tabel 2.3, notasi dan nilai-nilai yang diizinkan untuk masing-masing bilangan kuantum dirangkumkan. Bilangan kuantum ke-empat, bilangan kuantum magnetik spin berkaitan dengan momentum sudut elektron yang disebabkan oleh gerak spinnya yang terkuantisasi. Komponen aksial momentum sudut yang diizinkan hanya dua nilai, +1/2(h/2π) dan -1/2(h/2π). Bilangan kuantum magnetik spin berkaitan dengan nilai ini (ms = +1/2 atau -1/2). Hanya bilangan kuantum spin sajalah yang nilainya tidak bulat.

Tabel 2.3 Bilangan kuantum

Nama (bilangan kuantum) simbol Nilai yang diizinkan
Utama n 1, 2, 3,…
Azimut l 0, 1, 2, 3, …n – 1
Magnetik m(ml) 0, ±1, ±2,…±l
Magnetik spin ms +1/2, -1/2

Simbol lain seperti yang diberikan di Tabel 2.4 justru yang umumnya digunakan. Energi atom hidroegn atau atom mirip hidrogen ditentukan hanya oleh bilangan kuantum utama dan persamaan yang mengungkapkan energinya identik dengan yang telah diturunkan dari teori Bohr.

Tabel 2.4 Simbol bilangan kuantum azimut

nilai 0 1 2 3 4
simbol s p d f g

d. Orbital

Fungsi gelombang elektron disebut dengan orbital. Bila bilangan koantum utama n = 1, hanya ada satu nilai l, yakni 0. Dalam kasus ini hanya ada satu orbital, dan kumpulan bilangan kuantum untuk orbital ini adalah (n = 1, l = 0). Bila n = 2, ada dua nilai l, 0 dan 1, yang diizinkan. Dalam kasus ada empat orbital yang didefinisikan oelh kumpulan bilangan kuantum: (n = 2, l = 0), (n = 2, l = 1, m = -1), (n = 2, l = 1, m = 0), (n = 2, l = 1, m = +1).

Sukar untuk mengungkapkan Ψ secara visual karena besaran ini adalah rumus matematis. Namun, Ψ2 menyatakan kebolehjadian menemukan elektron dalam jarak tertentu dari inti. Bila kebolhejadian yang didapatkan diplotkan, anda akan mendapatkan Gambar 2.5. Gambar sferis ini disebut dengan awan elektron.

Bila kita batasi kebolehjadian sehingga katakan kebolehjadian menemukan elektron di dalam batas katakan 95% tingkat kepercayaan, kita dapat kira-kira memvisualisasikan sebagai yang ditunjukkan dalam Gambar 2.6.


KONFIGURASI ELEKTRON ATOM

Bila atom mengnadung lebih dari dua elektron, interaksi antar elektron harus dipertimbangkan, dan sukar untuk menyelesaikan persamaan gelombang dari sistem yang sangat rumit ini. Bila diasumsikan setiap elektron dalam atom poli-elektron akan bergerak dalam medan listrik simetrik yang kira-kira simetrik orbital untuk masing-masing elektron dapat didefinisikan dengan tiga bilangan kuantum n, l dan m serta bilangan kunatum spin ms, seperti dalam kasus atom mirip hidrogen.

Energi atom mirip hidrogen ditentukan hanya oleh bilangan kuantum utama n, tetapi untuk atom poli-elektron terutama ditentukan oleh n dan l. Bila atom memiliki bilangan kuantum n yang sama, semakin besar l, semakin tinggi energinya.

PRINSIP EKSKLUSI PAULI

Menurut prinsip eksklusi Pauli, hanya satu elektron dalam atom yang diizinkan menempati keadaan yang didefinisikan oleh kumpulan tertentu 4 bilangan kuantum, atau, paling banyak dua elektron dapat menempati satu orbital yang didefinisikan oelh tiga bilangan kuantum n, l dan m. Kedua elektron itu harus memiliki nilai ms yang berbeda, dengan kata lain spinnya antiparalel, dan pasangan elektron seperti ini disebut dengan pasangan elektron.

Kelompok elektron dengan nilai n yang sama disebut dengan kulit atau kulit elektron. Notasi yang digunakan untuk kulit elektron diberikan di Tabel 2.5.

Tabel 2.5 Simbol kulit elektron.

n 1 2 3 4 5 6 7
simbol K L M N O P Q

Tabel 2.6 Jumlah maksimum elektron yang menempati tiap kulit.

n kulit l simbol Jumlah
maks elektron
total di kulit
1 K 0 1s 2 (2 = 2×12)
2 L 0 2s 2 (8 = 2×22)


1 2p 6
3 M 0 3s 2 (18 = 2×32)


1 3p 6


2 3d 10
4 N 0 4s 2 (32 = 2×42)


1 4p 6


2 4d 10


3 4f 14

Inilah teori dasar hukum periodik, yang akan didiskusikan di Bab 5.

Misalnya, atom hidrogen dalam keadaan dasar memiliki satu elektron diu kulit K dan konfigurasi elektronnya (1s1). Atom karbon memiliki 2 elektron di kulit K dan 4 elektron di kulit L. Konfigurasi elektronnya adalah (1s22s22p2).


Soal dan jawaban tentang kelahiran mekanika kuantum

1) Ada berapa yang mempelajari tentang kelahiran mekanika kuantum?

Jawab: ada 3 yaitu, sifat gelombang partikel, prinsip ketidakpastian dan persamaan schrodinger.

2) Apa yg dikemukakan fisikawan asal jerman tentang prinsip ketidakpastian?

Jawab: tidak mungkin menentukan secara akurat posisi dan momentum secara simultan partikel yang sangat kecil semacam elektron.

3) Ide apa yang dikemukakan fisikawan austria tentang persamaan mekanika?

Jawab: bahwa persamaan De Broglie dapat diterapkan tidak hanya untuk gerakan bebas partikel, tetapi juga pada gerakan yang terikat seperti elektron dalam atom.

4) Sebutkan tiga jenis bilangan kuantum?

Jawab: kuantum utama, kuantum azimut dan kuantum magnetik.

5) Apa yang dimaksud dengan orbital?

Jawab: orbital adalah fungsi gelombang elektron.


Sumber: www.chem-is-try.org


 
You can follow any responses to this entry through the RSS 2.0 feed. You can leave a response.
0 Responses
Leave a Reply