Archives
PERTANYAAN DAN JAWABAN TENTANG HASIL DISKUSI KIMIA 3
1)
Dirangkum oleh: Fachturrizki R
Satu prestasi intelektual yang terbesar dalam kimia adalah tabel periodik unsur. Tabel periodik dapat dicetak dalam satu lembar kertas, tetapi apa yang terkandung di dalamnya dan apa yang dapat diberikan kepada kita sangat banyak dan tidak ternilai. Tabel ini adalah hasil jerih payah tak kenal lelah, yang berawal dari zaman Yunani, untuk mengetahui sifat materi sebenarnya. Sem ini dapat dikatakan kitab sucinya kimia. Nilai sistem periodik bukan hanya pada organisasi informasi yang telah diketahui, tetapi juga kemampuannya memprediksi sifat yang belum diketahui. Keampuhan sesungguhnya tabel periodik terletak di sini.
a. Usulan-usulan sebelum Mendeleev
Konsep unsur merupakan konsep yang sangat tua, sejak jaman Yunani, Menurut filsuf Yunani, materi dibentuk atas empat unsur: tanah, air, api dan udara. Pandangan ini perlahan ditinggalkan, dan akhirnya di abad 17 definisi unsur yang diberikan oleh kimiawan Inggris Robert Boyle (16271691) menggantikan definisi lama tadi. Boyle menyatakan bahwa unsur adalah zat yang tidak dapat diuraikan menjadi zat yang lebih sederhana.
Lavoisier mengusulkan daftar unsur dalam bukunya “Traite Elementire de Chemie”. Walaupun ia memasukkan cahaya dan panas dalam daftarnya, anggota lain daftar adalah apa yang kita sebut sebagai unsur sampai saat ini. Selain itu, ia menambahkan pada daftar unsur-unsur yang belum dideteksi tetapi ia yakini keberadaannya. Misalnya, khlorin pada waktu itu belum diisolasi, tetapi ia menambahkannya pada tabel sebagai radikal dari asam muriatik. Demikian juga, natrium dan kalium ada juga dalam tabel.
Di awal abad 19, unsur-unsur ini diisolasi dengan elektrolisis, dan daftar unsur perlahan diperluas. Di pertengahan abad 19, analisis spektroskopi, metoda bari mendeteksi unsur dikenalkan dan mempercepat pertambahan daftar ini. Walaupun disambut gembira oleh kimiawan, masalahmasalh baru muncul. Salah satu pertanyaan adalah ‘Apakah jumlah unsur terbatas?’ dan pertanyaan lain adalah ‘Apakah sifat unsur-unsur diharapkan akan mempunyai keteraturan tertentu?’
Penemuan unsu-unsur baru mengkatalisi diskusi-diskusi semacam ini. Ketika iodin ditemukan di tahun 1826, kimiawan Jerman Johann Wolfgang Döbereiner (1780-1849) mencatat kemiripan antara unsur ini dengan unsur yang telah dikenal khlorin dan bromin. Ia juga mendeteksi trio unsur mirip lain. Inilah yang dikenal dengan teori triade Döbereiner.
Tabel 5.1 Triade Döbereiner
litium (Li) | kalsium (Ca) | Khlorin (Cl) | sulfur (S) | mangan (Mn) |
Natrium (Na) | stronsium (Sr) | Bromin (Br) | selenium (Se) | khromium (Cr) |
kalium (K) | barium (Ba) | iodin (I) | telurium (Te) | Besi (Fe) |
b. Prediksi Mendeleev dan kebenarannya
Banyak ide pengelompokan unsur yang lain yang diajukan tetapi tidak memuaskan masyarakat ilmiah waktu itu. Namun, teori yang diusulkan oleh kimiawan Rusia Dmitrij Ivanovich Mendeleev (1834-1907), dan secara independen oleh kimiawan Jerman Julius Lothar Meyer (1830-1895) berbeda dengan usulan-usulan lain dan lebih persuasif. Keduanya mempunyai pandangan sama sebagai berikut:
Pandangan Mendeleev dan Meyer
- Daftar unsur yang ada waktu itu mungkin belum lengkap.
- Diharapkan sifat unsur bervariasi secara sistematik. Jadi sifat unsur yang belum diketahui dapat diprediksi.
Awalnya teori Mendeleev gagal menarik perhatian. Namun, di tahun 1875, ditunjukkan bahwa unsur baru galium ditemukan oleh kimiawan Perancis Paul Emile Lecoq de Boisbaudran (18381912) ternyata bukan lain adalah eka-aluminum yang keberadaan dan sifatnya telah diprediksikan oleh Mendeleev. Jadi, signifikansi teori Mendeleev dan Meyer secara perlahan diterima. Tabel 5.2 memberikan sifat yang diprediksi oleh Mendeleev untuk unsur yang saat itu belum diketahui ekasilikon dan sifat germanium yang ditemukan oleh kimiawan Jerman Clemens Alexander Winkler (1838-1904).
Tabel 5.2 Prediksi sifat unsu eka-silikon oleh Mendeleev dan perbandingannya dengan sifat yang kemudian ditemukan.
Sifat | eka-silicon | germanium |
---|---|---|
Massa atom relatif | 72 | 72,32 |
Rapat massa | 5,5 | 5,47 |
Volume atom | 13 | 13,22 |
Valensi | 4 | 4 |
Kalor jenis | 0,073 | 0,076 |
Rapat jenis dioksida | 4,7 | 4,703 |
Titik didih tetrakhlorida (°C) | <100 | 86 |
Mendeleev mempublikasikan tabel yang dapat dianggap sebagai asal mula tabel periodik modern. Dalam menyiapkan tabelnya, Mendeleev awalnya menyusun unsur berdasarkan urutan massa atomnya, sebagaimana pendahulunya. Namun, ia menyatakan keperiodikan sifat, dan kadang menyusun ulang unsur-unsur, yang berakibat membalikkan urutan massa atom.
Lebih lanjut, situasinya diperumit sebab prosedur menentukan massa atom belum distandarkan, dan kadang kimiawan mungkin menggunakan massa atom yang berbeda untuk unsur yang sama. Dilema ini secara perlahan diatasi setelah International Chemical Congress (Kongres ini diadakan di tahun 1860 di Karlsruhe, Jerman. Tujuan kongres ini untuk mendiskusikan masalah penyatuan massa atom. Dalam kesempatan ini Cannizzaro mengenalkan teori Avogadro.) pertama yang dihadiri oleh Mendeleev, namun kesukaran-kesukaran tetap ada.
Dengan mendasarkan pada valensi dalam menentukan massa atom, Mendeleev sedikit banyak menyelesaikan masalah (Tabel 5.3).
Tabel 5.3 Tabel Periodik awal Mendeleev (1869).
c. Tabel Periodik dan konfigurasi elektron
Tabel periodik secara terus menerus bertambah unsurnya setelah tabel periodik diusulkan Mendeleev. Sementara, muncul berbagai masalah. Salah satu masalah penting adalah bagaimana menangani gas mulia, unsur transisi dan unsur tanah jarang. Semua masalah ini dengan baik diselesaikan dan membuat tabel periodik lebih bernilai. Tabel periodik, kitab suci kimia, harus dirujuk secara rutin.
Golongan baru gas mulia dengan mudah disisipkan di antara unsur positif yang sangat reaktif, logam alkali (golongan 1) dan unsur negatif yang sangat reaktif, halogen (golongan 7).
Unsur logam transisi diakomodasi dalam tabel periodik dengan menyisipkan periode panjang walaupun rasionalnya tidak terlalu jelas. Masalah yang nyata adalah lantanoid. Lantanoid ditangani sebagai unsur “ekstra” dan ditempatkan secara marjinal di luar bagian utama tabel periodik. Namun, sebenarnya prosedur ini tidak menyelesaikan masalah utama. Pertama, mengapa unsur ekstra ini ada tidak jelas, bahkan lebih menjadi teka-teki adalah pertanyaan: apakah ada batas jumlah unsur dalam tabel periodik? Karena ada unsur-unsur yang sangat mirip, sangat sukar untuk memutuskan berapa banyak unsur dapat ada di alam.
Teori Bohr dan percobaan Moseley menghasilkan penyelesaian teoritik masalah-masalah ini. Penjelasan tabel periodik dari periode pertama sampai periode ketiga dapat dijelaskan dengan teori konfigurasi elektron yang dipaparkan di bab 4. Periode pertama (1H dan 2He) berkaitan dengan proses memasuki orbital 1s. Demikian juga periode kedua (dari 3Li sampai 10Ne) berkaitan dengan pengisian orbital 1s, 2s dan 2p, dan periode ke-3 (dari 11Na sampai 18Ar) berkaitan dengan pengisian orbital 1s, 2s, 2p, 3s dan 3p.
Periode panjang dimulai periode ke-4. Penjelasan atas hal ini adalah karena bentuk orbital d yang berbeda drastis dari lingkaran, dan jadi energi elektron 3d bahkan lebih tinggi dari 4s. Akibatnya, dalam periode ke-4, elektron akan mengisi orbital 4s (19K dan 20Ca) segera setelah pengisian orbital 3s dan 3p, melompati orbital 3d. Kemudian elektron mulai menempati orbital 3d. Proses ini berkaitan dengan sepuluh unsur dari 21Sc sampai 30Zn. Proses pengisian orbital 4p selanjutnya berkaitan dengan enam unsur dari 31Ga sampai 36Kr. Inilah alasan mengapa periode ke-4 mengandung 18 unsur bukan 8. Energi elektron orbital 4f jauh lebih tinggi dari orbital 4d dan dengan demikian elektron 4f tidak memainkan peran pada unsur periode ke-4.
Tabel 5.4a Konfigurasi elektron atom 1H-54Xe. Tabel 5.4b Konfigurasi elektron atom (55Cs-103Lr).
Periode ke-5 mirip dengan periode ke-4. Elektron akan mengisi orbital 5s, 4d dan 5p dalam urutan ini. Akibatnya periode ke-5 akan memiliki 18 unsur. Orbital 4f belum terlibat dan inilah yang merupakan alasan mengapa jumlah unsur di periode 5 adalah 18.
Jumlah unsur yang dimasukkan dalam periode ke-6 berjumlah 32 sebab terlibat 7×2 = 14 unsur yang berkaitan dengan pengisian orbital 4f. Awalnya elektron mengisi orbital 6s (55Cs dan 56Ba). Walaupun ada bebrapa kekecualian, unsur dari 57La sampai 80Hg berkaitan dengan pengisian orbital 4f dan kemudian 5d. Deret lantanoid (sampai 71Lu) unsur tanah jarang berkaitan dengan pengisian orbital 4f. Setelah proses ini, enam unsur golongan utama (81Tl sampai 86Rn) mengikuti, hal ini berkaitan dengan pengisian orbital 6p.
Periode ke-7 mulai dengan pengisian orbital 7s (87Fr dan 88Ra) diikuti dengan pengisian orbital 5f menghasilkan deret aktinoid unsur tanah jarang (dari 89Ac sampai unsur no 103). Dunia unsur akan meluas lebih lanjut, tetapi di antara unsur-unsur yang ada alami, unsur dengan nomor atom terbesar adalah 92U. Unsur setelah 92U adalah unsur-unsur buatan dengan waktu paruh yang sangat pendek. Sukar untuk meramalkan perpanjangan daftar unsur semacam ini, tetapi sangat mungkin unsur baru akan sangat pendek waktu paruhnya.
Di Tabel 5.5, dirangkumkan hubungan antara tabel periodik dan konfigurasi elektron.
Tabel 5.5 Konfigurasi elektron tiap perioda.
period | orbital yang diisi | jumlah unsur |
1 (pendek) | 1s | 2 |
2 (pendek) | 2s, 2p | 2 + 6 = 8 |
3 (pendek) | 3s, 3p | 2 + 6 = 8 |
4 (panjang) | 3d, 4s, 4p | 2 + 6 + 10 = 18 |
5 (panjang) | 4d, 5s, 5p | 2 + 6 + 10 = 18 |
6 (panjang) | 4f, 5d, 6s, 6p | 2 + 6 + 10 + 14 = 32 |
Sebagaimana dipaparkan sebelumnhya, hukumMoseley menyatakan bahwa ada hubungan antara panjang gelombang λ sinar-X karakteristik unsur dan muatan listrik intinya Z (yakni, nomor atom): 1/λ = c(Z – s)2 (2.11)
Berkat hukum Moseley, unsur-unsur kini dapat disebut dengan menyebut nomor atomnya. Kini kita dapat dengan tepat mengetahui jumlah unsur di alam.
SOAL DAN JAWABAN TENTANG TABEL PERIODIK
1) Apa arti dari unsur menurut boyle?
Jawab: boyle menyatakan bahwa unsur adalah zat yang tidak dapat diuraikan menjadi zat yang lebih sederhana.
2) Apa tujuan dari internasional chemical congress?
Jawab: Tujuan kongres ini untuk mendiskusikan masalah penyatuan massa atom. Dalam kesempatan ini Cannizzaro mengenalkan teori Avogadro.) pertama yang dihadiri oleh Mendeleev, namun kesukaran-kesukaran tetap ada.
3) Apa yang dinyatakan oleh hukum moesley?
Jawab: hukumMoseley menyatakan bahwa ada hubungan antara panjang gelombang λ sinar-X karakteristik unsur dan muatan listrik intinya Z (yakni, nomor atom): 1/λ = c(Z – s)2.
4) Apa manfaat dari hukum moesley yang masih kita rasakan sekarang?
Jawab: Berkat hukum Moseley, unsur-unsur kini dapat disebut dengan menyebut nomor atomnya. Kini kita dapat dengan tepat mengetahui jumlah unsur di alam.
5) Golongan baru gas mulia apa saja yang disisipkan pada masa mendeleev?
Jawab: Golongan baru gas mulia dengan mudah disisipkan di antara unsur positif yang sangat reaktif, logam alkali (golongan 1) dan unsur negatif yang sangat reaktif, halogen (golongan 7).
Sumber: www.chem-is-try.org
Dirangkum oleh: Fachturrizki R
a. Energi Ionisasi pertama
Bila unsur-unsur disusun sesuai dengan massa atomnya, sifat unsur atau senyawa menunjukkan keperiodikan, dan pengamatan ini berujung pada penemuan hukum periodik. Konfigurasi elektron unsur menentukan tidak hanya sifat kimia unsur tetapi juga sifat fisiknya. Keperiodikan jelas ditunjukkan sebab energi ionisasi atom secara langsung ditentukan oleh konfigurasi elektron. Energi ionisasi didefinisikan sebagai kalor reaksi yang dibutuhkan untuk mengeluarkan elektron dari atom netral, misalnya, untuk natrium:
Na(g) →Na+(g) + e- (5.1)
Energi ionisasi pertama, energi yang diperlukan untuk memindahkan elektron pertama, menunjukkan keperodikan yang sangat jelas sebagaimana terlihat di gambar 5.1. Untuk periode manapun, energi ionisasi meningkat dengan meningkatnya nomor atom dan mencapai maksium pada gas mulia. Daam golongan yang sama energi ionisasi menurun dengan naiknya nomor atom. Kecenderungan seperti ini dapat dijelaskan dengan jumlah elektron valensi, muatan inti, dan jumlah elektron dalam.
Energi ionisasi kedua dan ketiga didefinisikan sebagai energi yang diperlukan untuk memindahkan elektron kedua dan ketiga.
Gambar 5.1 Energi ionisasi pertama atom. Untuk setiap perioda, energi ionisai minimum untuk logam alkali dan maksimumnya untuk gas mulia.
b. Afinitas elektron dan keelektronegatifan
Afinitas elektron didefinisikan sebagai kalor reaksi saat elektron ditambahkan kepada atom netral gas, yakni dalam reaksi.
F(g) + e¯ → F¯(g) (5.2)
Nilai positif mengindikasikan reaksi eksoterm, negatif menunjukkan reaksi endoterm. Karena tidak terlalu banyak atom yang dapat ditambahi elektron pada fasa gas, data yang ada terbatas jumlahnya dibandingkan jumlah data untuk energi ionisasi. Tabel 5.6 menunjukkan bahwa afinitas elektron lebih besar untuk non logam daripada untuk logam.
Tabel 5.6 Afinitas elektron atom.
H | 72,4 | C | 122,5 | F | 322,3 |
---|---|---|---|---|---|
Li | 59, | O | 141,8 | Cl | 348,3 |
Na | 54,0 | P | 72,4 | Br | 324,2 |
K | 48,2 | S | 200,7 | I | 295,2 |
Besarnya kenegativan(elektron) yang didefinisikan dengan keelektronegatifan (Tabel 5.7), yang merupakan ukuran kemampuan atom mengikat elektron. Kimiawan dari Amerika Robert Sanderson Mulliken (1896-1986) mendefinisikan keelektronegativan sebanding dengan rata-rata aritmatik energi ionisasi dan afinitas elektron.
Tabel 5.7 Keelektronegativitan unsur golongan utama elements (Pauling)
Pauling mendefinisikan perbedaan keelektronegativan antara dua atom A dan B sebagai perbedaan energi ikatan molekul diatomik AB, AA dan BB. Anggap D(A-B), D(A-A) dan D(B-B) adalah energi ikatan masing-masing untuk AB, AA dan BB. D(A-B) lebih besar daripada rata-rata geometri D(A-A) dan D(B-B). Hal ini karena molekul hetero-diatomik lebih stabil daripada molekul homo-diatomik karena kontribusi struktur ionik. Akibatnya, ∆(A-B), yang didefinisikan sebagai berikut, akan bernilai positif:
(A-B) = D(A-B) -√D(A-A)D(B-B) > 0 (5.3)
(A-B) akan lebih besar dengan membesarnya karakter ionik. Dengan menggunakan nilai ini, Pauling mendefinisikan keelektronegativan x sebagai ukuran atom menarik elektron.
|xA -xB|= √D(A-B) (5.4)
xA dan xB adalah keelektronegativan atom A dan B.
Apapun skala keelektronegativan yang dipilih, jelas bahwa keelektronegativan meningkat dari kiri ke kanan dan menurun dari atas ke bawah. Keelketroegativan sangat bermanfaat untuk memahami sifat kimia unsur.
Informasi lain yang bermanfaat dapat disimpulkan dari Tabel 5.7. Perbedaan keelektronegativan antara dua atom yang berikatan, walaupun hanya semi kuantitatif, berhubungan erat dengan sifat ikatan kimia seperti momen dipol dan energi ikatan..
Misalnya ada distribusi muatan yang tidak sama dalam ikatan A-B (xA > xB). Pasangan muatan positif dan negatif ±q yang dipisahkan dengan jarak r akan membentuk dipol (listrik).
Arah dipol dapat direpresentasikan dengan panah yang mengarah ke pusat muatan negatif dengan awal panah berpusat di pusat muatan positif. Besarnya dipol, rq, disebut momen dipol. Momen dipol adalah besaran vektor dan besarnya adalah µ dan memiliki arah.
Besarnya momen dipol dapat ditentukan dengan percobaan tetapi arahnya tidak dapat. Momen dipol suatu molekul (momen dipol molekul) adalah resultan vektor momen dipol ikatan-ikatan yang ada dalam molekul. Bila ada simetri dalam molekul, momen dipol ikatan yang besar dapat menghilangkan satu sama lain sehingga momen dipol molekul akan kecil atau bahkan nol.
c. Bilangan oksidasi atom
Terdapat hubungan yang jelas antara bilangan oksidasi (atau tingkat oksidasi) atom dan posisinya dalam tabel periodik. Bilangan oksidasi atom dalam senyawa kovalen didefinisikan sebagai muatan imajiner atom yang akan dimiliki bila elektron yang digunakan bersama dibagi sama rata antara atom yang berikatan (kalau atom yang berikatan sama) atau diserahkan semua ke atom yang lebih kuat daya tariknya (kalau yang berikatan atom yang berbeda).
(1) UNSUR GOLONGAN UTAMA
Untuk unsur golongan utama, bilangan oksidasi dalam banyak kasus adalah jumlah elektron yang akan dilepas atau diterima untuk mencapai konfigurasi elektron penuh, ns2np6 (kecuali untuk periode pertama) atau konfigurasi elektron nd10 (gambar 5.2).
Hal ini jelas untuk unsur-unsur periode yang rendah yang merupakan anggota golongan 1, 2 dan 13-18. Untuk periode yang lebih besar, kecenderungannya memiliki bilangan oksidasi yang berhubungan dengan konfigurasi elektron dengan elektron ns dipertahankan dan elektron np akan dilepas. Misalnya, timah Sn dan timbal Pb, keduanya golongan 14, memiliki bilangan oksidasi +2 dengan melepas elektron np2 tetapi mempertahankan elektron ns2, selain bilangan oksidasi +4. Alasan yang sama dapat digunakan untuk adanya fakta bahwa fosfor P dan bismut Bi, keduanya golongan 15 dengan konfigurasi elektron ns2np3, memilki bilangan oksidasi +3 dan +5.
Umumnya, pentingnya bilangan oksidasi dengan elektron ns2 dipertahankan akan menjadi semakin penting untuk periode yang lebih besar. Untuk senyawa nitrogen dan fosfor, bilangan oksidasi +5 dominan, sementara untuk bismut yang dominan adalah +3 dan bilangan oksidasi +5 agak jarang.
Unsur logam dan semilogam (silikon Si atau germanium Ge) jarang memiliki nilai bilangan oksidasi negatif, tetapi bagi non logam fenomena ini umum dijumpai. Dalam hidrida nitrogen dan fosfor, NH3 dan PH3, bilangan oksidasi N dan P adalah–3. Semakin tinggi periode unsur, unsur akan kehilangan sifat ini dan bismut Bi tidak memiliki bilangan oksidasi negatif. Di antara unsur golongan 16, bilangan oksidasi-2 dominan seperti dalam kasus oksigen O. Kecenderungan ini lagi-lagi akan menurun untuk unsur-unsur di periode lebih tinggi. Misalkan oksigen hanya memiliki bilangan oksidasi negatif, tetapi S memiliki bilangan oksidasi positif seperti +4 dan +6 yang juga signifikan.
(2) UNSUR TRANSISI
Walaupun unsur transisi memiliki beberapa bilangan oksidasi, keteraturan dapat dikenali. Bilangan oksidasi tertinggi atom yang memiliki lima elektron yakni jumlah orbital d berkaitan dengan keadaan saat semua elektron d (selain elektron s) dikeluarkan. Jadi, dalam kasus skandium dengan konfigurasi elektron (n-1)d1ns2, bilangan oksidasinya 3. Mangan dengan konfigurasi (n-1)d5ns2, akan berbilangan oksidasi maksimum +7.
Bila jumlah elektron d melebihi 5, situasinya berubah. Untuk besi Fe dengan konfigurasi elektron (n-1)d6ns2, bilangan oksidasi utamanya adalah +2 dan +3. Sangat jarang ditemui bilangan oksidasi +6. Bilangan oksidasi tertinggi sejumlah logam transisi penting seperti kobal Co, Nikel Ni, tembaga Cu dan zink Zn lebih rendah dari bilangan oksidasi atom yang kehilangan semua elektron (n–1)d dan ns-nya. Di antara unsur-unsur yang ada dalam golongan yang sama, semakin tinggi bilangan oksidasi semakin penting untuk unsur-unsur pada periode yang lebih besar.
d. Ukuran atom dan ion
Ketika Meyer memplotkan volume atom yang didefinisikan sebagai volume 1 mol unsur tertentu (mass atomik/kerapatan) terhadap nomor atom dia mendapatkan plot yang berbentuk gigi gergaji. Hal ini jelas merupakan bukti bahwa volume atom menunjukkan keperiodikan. Karena agak sukar menentukan volume atom semua unsur dengan standar yang identik, korelasi ini tetap kualitatif. Namun, kontribusi Meyer dalam menarik perhatian adanya keperiodikan ukuran atom pantas dicatat.
Masih tetap ada beberapa tafsir ganda bila anda ingin menentukan ukuran atom sebab awan elektron tidak memiliki batas yang jelas. Untuk ukuran atom logam, kita dapat menentukan jari-jari atom dengan membagi dua jarak antar atom yang diukur dengan analisis difraksi sinar-X. Harus dinyatakan bahwa nilai ini bergantung pada bentuk kristal (misalnya kisi kubus sederhana atau kubus berpusat muka, dsb.)dan hal ini akan menghasilkan tafsir ganda itu. Masalah yang sama ada juga dalam penentuan jari-jari ionik yang ditentukan dengan analisis difraksi sinar-X kristal ion.
Keperiodikan umum yang terlihat di gambar 5.3 yang menunjukkan kecenderungan jari-jari atom dan ion. Misalnya, jari-jari kation unsur seperiode akan menurun dengan meningkatnya nomor atom. Hal ini logis karena muatan inti yang semakin besar akan menarik elektron lebih kuat. Untuk jari-jari ionik, semakin besar periodenya, semakin besar jari-jari ionnya.
SOAL DAN JAWABAN TENTANG SIFAT PERIODIK UNSUR
1) Didefinisikan apa energi ionisasi?
Jawab:Energi ionisasi didefinisikan sebagai kalor reaksi yang dibutuhkan untuk mengeluarkan elektron dari atom netral, misalnya, untuk natrium.
2) Apa manfaat dari keelektronegativan?
Jawab: Keelketronegativan sangat bermanfaat untuk memahami sifat kimia unsur.
3) Apa momen dipol suatu molekul?
Jawab: Momen dipol suatu molekul (momen dipol molekul) adalah resultan vektor momen dipol ikatan-ikatan yang ada dalam molekul. Bila ada simetri dalam molekul, momen dipol ikatan yang besar dapat menghilangkan satu sama lain sehingga momen dipol molekul akan kecil atau bahkan nol.
4) Ada berapa unsur dalam bilangan oksidasi atom, sebutkan?
Jawab: ada 2 yaitu:
-unsur golongan utama
-unsur transisi
5) Apa yang ditentukkan konfigurasi elektron unsur?
Jawab: konfigurasi elektron unsur menentukan tidak hanya sifat kimia unsur tetapi juga sifat fisiknya.
Sumber: www.chem-is-try.org
Dirangkum oleh: Fachturrizki R
a. Keperiodikan sifat oksida
Oksigen dapat membentuk senyawa (oksida) dengan hampir semua unsur, kecuali beberapa gas mulia. Inilah alasan mengapa oksigen awalnya digunakan sebagai standar massa atom. Ketika prosedur untuk menentukan massa atom belum disepakati secara penuh, saat itu lebih nyaman digunakan ”ekuivalen”, yakni kuantitas zat yang tepat bereaksi dengan sejumlah tertentu oksigen. Bahkan hingga kini, membandingkan sifat oksida sama pentingnya dengan membandingkan sifat unsur-unsurnya.
Sebagian besar kalor pembentukan oksida, yakni kalor reaksi saat unsur bereaksi dengan oksigen, besar dan negatif. Hal ini mengindikasikan bahwa paling tidak ada satu oksida stabil. Hanya terdapat beberapa oksida yang memiliki nilai kalor pembentukan positif, yakni oksida halogen atau gas mulia.
Untuk meyakinkan apakah nilai ini menunjukkan keperiodikan, kalor reaksi unsur dengan sejumlah tertentu (8 g) oksigen (bukan kalor reaksi per mol) diperhatikan. Representasi nilai kalor reaksi ini secara skematik yang diberikan di gambar 5.4. Untuk semua periode, nilai absolut kalor pembentukan cenderung menurun ketika nomor atom meningkat.
Akan lebih mudah mengklasifikasikan oksida berdasarkan keasaman dan kebasaannya karena hampir semua oksida bersifat asam atau basa. Klasifikasi ini juga akan membantu pemahaman bab 9 yakni pembahasan asam dan basa dibahas.
Produk reaksi antara oksida dan air biasanya memiliki gugus hidroksi. Sebagaimana akan didiskusikan nanti, banyak oksida bersifat asam bahkan bila oksida-oksida ini tidak memiliki hidrogen. Dalam hal produk reaksi antara oksida asam dan air, hidrogen dari gugus hidroksi cenderung terdisosiasi menjadi proton. Jadi, asam yang mengandung hidrogen asam terikat pada oksigen disebut asam okso. Di pihak lain, produk reaksi antara oksida basa dan air dinamai dengan hidroksida yang mengandung gugus hidroksi yang cenderung terdisosiasi sebagai ion hidroksida OH¯.
Oksida logam alkali atau alkali tanah kurang lebih akan larut dalam air dan menunjukkan sifat basa. Natrium oksida Na2O adalah cntoh khas oksida basa. Jadi,
Na2O(s) + H2O → 2Na+(aq) + 2OH¯(aq) (5.5)
(aq) menunjukkan bahwa spesi ini ada dalam larutan dalam air. Bahkan bila oksida ini sedikit larut dalam air, oksida ini tetap basa bila bereaksi dengan air.
Oksida unsur-unsur golongan 13 reaktif baik pada asam dan basa dan dinamai dengan oksida amfoter. Contoh yang terbaik adalah Al2O3.
Al2O3 + 6HCl → 2AlCl3 + 3H2O (5.6)
Al2O3 + 2NaOH + 3H2O → 2Na[Al(OH)4]2 (5.7)
Sebagian besar oksida non logam bersifat asam. Kekuatan asamnya meningkat dari kiri ke kanan dalam satu periode dalam tabel periodik. Dengan kata lain, keasaman menjadi lebih kuat dengan meningkatnya sifat non logamnya. Sebagaimana unsur golongan 14, karbon memiliki dua oksida, CO dan CO2, dan keasaman CO2 lemah (H2CO3 adalah asam lemah). Oksida karbon berwujud gas tetapi oksida silikon dan unsur-unsur di bawahnya berwujud padat. SiO2 tidak larut dalam air, tetapi oksida ini bersifat asam karena bereaksi dengan basa.
SiO2 + 2NaOH → Na2SiO3 + H2O (5.8)
Sebaliknya, banyak oksida golongan 15 dan 16 larut dalam air. SO3 dan P4O10 adalah oksida asam karena oksida ini bereaksi dengan air menghasilkan proton. Untuk unsur-unsur, ada beberapa oksida yang berkaitan dengan beberapa bilangan oksidasi. Ada dua oksida belerang dengan bilangan oksidasi +4 dan +6. Contoh khasnya adalah oksida nitrogen. Di Tabel 5.8, sederet oksida nitrogen dan hidridanya didaftarkan. Oksida-oksida ini akan didiskusikan lebih lanjut nanti.
Tabel 5.8 Bilangan oksidasi berbagai oksida nitrogen.
Bilangan oksidasi | Senyawa | Rumus Lewis |
-3 | Amonia | |
-2 | Hidrazin | |
-1 | Hidroksilamin | |
0 | Nigtrogen | |
1 | Dinitrogen oksida | |
2 | Nitrogen oksida | |
3 | Dinitrogen dioksida | |
4 | Asam nitrat |
Bila suatu unsur memiliki lebih dari satu oksida, oksida dengan bilangan oksidasi lebih tinggi memiliki keasaman yang lebih besar daripada yang berbilangan oksidasi lebih rendah. Untuk belerang, SO2 (asam oksonya; H2SO3) adalah asam lemah tetapi SO3 (H2SO4) adalah asam kuat. Keasaman oksida khlorin meningkat dengan urutan sebagai yang ditunjukkan berikut ini.
Cl2O (HClO) <>2O3 (HClO2) <>2O5 (HClO3) <>2O7 (HClO4)
Keasaman Cl2O (HClO) adalah asam sangat lemah sementara Cl2O7 (HClO4) adalah asam kuat.
Tabel 5.9 memberikan oksida dengan bilangan oksidasi tertinggi diantara unsur golongan utama dan kepriodikan keasaman/kebasaan. Catat bahwa oksida amfoter terletak di sudut atas kiri ke sudut kanan bawah tabel periodik.
b. Keperiodikan sifat hidrida
Sebagian besar unsur golongan utama menghasilkan hidrida ketika bereaksi dengan hidrogen, tetapi kestabilan hidridanya bergantung pada letak unsur dalam tabel periodik. Hidrida unsur golongan 1 dan 2 yang elektropositif dan unsur golongan 16 dan 17 yang elektronegatif bersifat stabil, sementara hidrida golongan 13, 14, dan 15 unsur logam berat kadang sukar disintesis.
Tabel 5.9 Keasaman dan kebasaan oksida unsur golongan utama.
Hidrida unsur logam alkali dan logam alkali tanah adalah kristal tak berwarna, dan dengan elektrolisis lelehan hidrida akan dihasilkan hidrogen di anoda. Fakta ini menyarankan bahwa hidrida logam ini, misalnya natrium hidrida, ada sebagai Na+H¯, sebagai kristal mirip garam. Semua hidrida ini adalah basa kuat.
Beberapa unsur golongan 13 dan 14 memiliki lebih dari satu hidrida. Misalnya, hidrida karbon tidak hanya metana CH4, tetapi juga karbena CH2, walaupun sukar mengisolasi CH2 sebab ketakstabilannya yang terlalu besar. Semua hidrida unsur golongan 14 termasuk metana adalah molekul kovalen. Dari kiri ke kanan dalam tabel periodik, karakter kovalen hidrida menurun dan karakter ioniknya meningkat. Ikatan O-H dalam air dan ikatan Cl-H dalam hidrogen khlorida, misalnya, dianggap polar, dan berdisosiasi di air menghasilkan H+. Sebaliknya, keasaman metana bisa diabaikan.
Umumnya hidrida unsur golongan utama adalah molekul, hidrida jenis ini memiliki titik didih dan titik lelh yang khas, dan menunjukkan keperiodikan. Namun, hidrida unsur periode 2 tidak terlalu berperilaku seperti itu. Misalnya, titik didihnya jauh lebih besar daripada hidrida unsur periode ke3 (gambar 5.5).
Karena titik didih hidrida unsur periode ke-3, dan selanjutnya, semakin tinggi dan menunjukkan keperiodikan, jelas sifat hidrida unsur periode ke-2 merupakan kekecualian. Dikenali dengan baik bahwa pembentukan ikatan hidrogen di hidrida unsur periode ke-2 merupakan alasan hal ini. Ikatan hidrogen terjadi dalam senyawa yang memiliki ikatan antara hidrogen dan unsur elektronegatif. Ikatan H-X terpolarisasi menjadi H+-X¯. Interaksi tarikan antara dipol yang terbentuk adalah gaya dorong ikatan hidrogen.
Sifat-sifat fisik seperti titik didih dan titik leleh sedikit banyak menunjukkan keperiodikan. Di antara unsur yang ada dalam golongan yang sama, keperiodikan ini kadang jelas. Misalnya, di antara halogen perubahan unsur dari gas menjadi cair, dan dari cair menjadi padat. Perubahan ini tidak harus seragam. Nitrogen adalah gas, tetapi fosfor dan unsur lain adalah padat. Jelas terlihat ada ketidakkontinyuan di sini.
Selingan-Pelopor yang tak terkenali
Hanya sedikit kimiawan yang tertarik pada keperiodikan unsur. Kimiawan Inggris John Alexandere Reina Newlands (1837-1898) adalah salah satu di antaranya. Sekitar tahun 1865, ia menyusun unsur menurut kenaikan massa atom 60 unsur yang saat itu telah dikenali, dan ia menyusunnya dalam tabel yang terdiri atas delapan baris dan enam kolom. Ia terkejut, ia mengamati bahwa unsur pertama dan ke-8 dan selanjutnya, ke-8 dan ke-15 memiliki sifat yang mirip. Dengan kata lain, unsur dengan sifat yang mirip akan muncul pada unsur ke-8. Kemunculan kemiripan setiap urutan ke-8 sangat mirip dengan yang ada dalam notasi musik. Ia mengumumkan penemuannya pada pertemuan ilmiah, dan menyebutnya dengan nama hukum oktaf. Ilmuwan Inggris pada waktu itu mengolok-oloknya, menanyakan padanya apa yang akan terjadi bila orang menyusun unsur dalam urutan alfabetis.
John Newlands (1837-1898)
Selama beberapa tahun Newlands diabaikan. Akhirnya di tahun 1887, lebih dari 10 tahun setelah penemuan Mendeleev dikenali, Chemical Society (Inggris) menganugerahinya hadiah.
SOAL DAN JAWABAN TENTANG KEPERIODIKAN SIFAT SENYAWA SEDERHANA
1) Mengapa oksigen awalnya digunakan sebagai standar massa atom?
Jawab: karena oksigen dapat membentuk senyawa (oksida) dengan hampir semua unsur, kecuali beberapa gas mulia.
2) Apa yang dimaksud dengan ekuivalen?
Jawab: yakni kuantitas zat yang tepat bereaksi dengan sejumlah tertentu oksigen.
3) Apa yang dimaksud dengan asam okso?
Jawab: asam yang mengandung hidrogen asam terikat pada oksigen.
4) Oksidasi apa saja yang memiliki nilai kalor pembentukkan positif?
Jawab: yang termasuk oksidasi yang memiliki nilai kalor pembentukkan positif adalah oksida halogen atau gas mulia.
5) Bagaimana cara yang mudah untuk mengklsifikasikan oksida?
Jawab: dengan cara mengklasifikasikan oksida berdasarkan keasaman dan kebasaannya karena hampir semua oksida bersifat asam atau basa.
Sumber: www.chem-is-try.org
PERTANYAAN DAN JAWABAN TENTANG HASIL DISKUSI KIMIA 2
1)
Dirangkum oleh: Fachturrizki R
TEORI IKATAN KIMIA SEBELUM ABAD 20
a. Afinitas kimia
Teori atom adalah premis untuk konsep ikatan kimia. Namun, teori afinitas lebih disukai kimiawan abad 18 mungkin dapat dianggap sebagai asal teori ikatan kimia modern, walaupun afinitas kimia merupakan teori reaksi kimia. Dasar teori afinitas adalah konsep „like attract like“, sesama manarik sesama. Kimiawan Perancis Étienne François Geoffroy (1672-1731) membuat tabel dengan enambelas jenis zat didaftarkan dalam urutan afinitasnya pada zat lain (Gambar 3.1). Karya ini memiliki signifikansi historis karena orang dapat memprediksi hasil reaksi dengan bantuan Gambar 3.1.
Sekitar pertengahan abad 19, kimiawan mencari cara untuk mengukur afinitas kimia dengan kuantititatif. Kimiawan Denmark Hans Peter Jargen Julius Thomsen (1826-1909) dan kimiawan Pernacis Pierre Eugene Marcelin Berthelot (1827-1907) menggunakan kalor yang dihasilkan dalam reaksi sebagai ukuran afinitas kimia. Namun, ada beberapa reaksi yang endoterm, walaupun sebagian besar reaksi eksoterm. Kemudian menjadi jelas, tidak ada hubungan yang sederhana antara kalor yang dihasilkan dalam reaksi dan afinitas kimia.
b. Dualisme Elektrokimia
Dualisme elektrokimia adalah teori ikatan kimia rasional yang pertama, dan teori ini diusulkan oleh Davy, Berzelius dkk di pertengahan pertama abad 19. Dasar teori Berzelius adalah sebagai berikut: atom berbagai unsur bermuatan positif atau negatif dalam jumlah yang berbeda, dan muatan ini adalah gaya dorong pembentukan zat. Misalnya, tembaga bermuatan listrik positif dan oksigen bermuatan negatif. Tembaga oksida terbentuk dengan kombinasi kedua unsur tersebut masih sedikit positif. Hal ini yang menyebabkan umumnya oksida logam yang agak positif dan air yang agak negatif bereaksi satu sama lain menghasilkan hidroksida. Penemuan bahwa elektrolisis oksida logam alkali menghasilkan logam dan oksigen dengan baik dijelaskan dengan dualisme elektrokimia.
Namun, ditemukan beberapa kasus yang tidak cocok dengan teori ini. Menurut aksioma Berzelius, atom hidrogen bermuatan positif dan atom khlorin bersifat negatif. Menurut teori Berzelius, walaupun asam asetat, CH3COOH, bersifat asam, asam trikhloroasetat, CCl3COOH, seharusnya basa. Berzelius percaya b ahwa muatan listrik adalah asal usul keasaman dan kebasaan. Karena penukaran hidrogen dengan khlorin, yang muatannya berlawanan, akan membentuk basa. Faktanya asam trikhloroasetat asam, bahkan lebih asam dari asam asetat Dualisme elektrokimia dengan demikian perlahan ditinggalkan.
Teori Valensi
Di paruh akhir abad 19, teori yang lebih praktis diusulkan dari bidang kimia organik. Banyak senyawa organik yang telah disintesis sebelum masa itu, dan strukturnya telah ditentukan dengan analisis kimia. Karena dijumpai banyak senyawa yang secara kimia mirip (misalnya, dalam nomenklatur saat ini sifat-sifat deret asam karboksilat), kimiawan mengusulkan beberapa teori untuk mengklasifikasikan dan mengurutkan kemiripan sifat ini. Menurut salah satu teori, satu radikal (misalnya radikal benzoil, C7H5O-) yang terdiri dari beberapa atom dianggap ekuivalen dengan satu atom dalam senyawa anorganik (Tabel 3.1). Teori lain menjelaskan bahwa kemampuan ikatan (afinitas kimia) atom tertentu yang terikat sejumlah tertentu atom lain.
Table 3.1 Beberapa contoh senyawa dengan radikal benzoil
Rumus saat itu | Rumus modern | Nama |
C7H5O・H | C6H5CHO | Benzaldehida |
C7H5O・OH | C6H5COOH | Asam benzoat |
C7H5O・Cl | C6H5COCl | benzoil khlorida |
Kimiawan Jerman Stradouity Friedrich August Kekulé (1829-1896) dan kimiawan Inggris Archibald Scott Couper (1831-1892) mengelaborasikan teori kedua menjadi teori valensi. Kekulé menganggap bahwa satu atom karbon memiliki empat satuan afinitas (dalam terminologi modern, valensi) dan menggunakan satuan afinitas ini dengan empat atom hidrogen membentuk CH4 atau berkombinasi dengan dua atom oksigen membentuk CO2. Ia juga menyarankan kemungkinan atom karbon dapat berkombinasi dengan atom karbon lain, menggunakan satu dari empat valensinya, dan setiap atom karbon dapat berkombinasi dengan atom lain termasuk atom karbon, dengan menggunakan tiga valensi sisanya.
Kekulé mengusulkan metoda menggambarkan molekul (yang disebut dengan sosis Kekulé) seperti di gambar 3.2. Pada tahap ini, valensi hanya sejenis indeks yang mengindikasikan rasio atom yang menyusun molekul.
Metana CH4 | etana CH3CH3 | asam asetat CH3COOH |
Gambar 3.2 Struktur molekul yang diusulkan oleh Kekulé. Pada tahap ini konsep ikatan kimia yang menghubungkan atom belum jelas.
Couper memformulasikan teorinya dengan cara yang mirip, tetapi ia mendahului Kekulé dalam menggunakan istilah “ikatan” yang digunakan seperti saat ini untuk menyatakan ikatan atom atom. Konsep fundamental dalam kimia organik modern, yakni rantai atom karbon, secara perlahan diformulasikan. Jadi konsep ikatan kimia digunakan oleh Kekulé dan Couper didasarkan atas teori valensi dan ikatan kimia pada dasarnya identik dengan konsep modern ikatan kimia. Harus ditekankan bahwa di abad 19 tidak mungkin menjawab pertanyaan mendasar mengapa kombinasi tetentu dua atom membentuk ikatan sementara kombinasi dua atom lain tidak akan membentuk ikatan.
TEORI IKATAN KIMIA BOHR
a. Ikatan ionik
Untuk mengetahui ikatan kimia dengan lebih dalam, atom harus dikenal dengan lebih dalam. Daro awal abad 20, pemahaman ilmuwan tentang struktur atom bertambah mendalam, dan hal ni mempercepat perkembangan teori ikatan kimia.
Kimiawan Jerman Albrecht Kossel (1853-1927) menganggap kestabilan gas mulia disebabkan konfigurasi elektronnya yang penuh (yakni, konfigurasi elektron di kulit terluarnya, kulit valensi, terisi penuh). Ia berusaha memperluas interpretasinya ke atom lain. Atom selain gas mulia cenderung mendapatkan muatan listrik (elektron) dari luar atau memberikan muatan listrik ke luar, bergantung apakah jumlah elektron di kulit terluarnya lebih sedikit atau lebihbanyak dari atom gas mulia yang terdekat dengannya. Bila suatu atom kehilangan elektron, atom tersebut akan menjadi kation yang memiliki jumlah elektron yang sama dengan gas mulia terdekat, sementara bila atom mendapatkan elektron, atom tersebut akan menjadi anion yang memiliki jumlah elektron yang sama dengan atom gas mulia terdekatnya. Ia menyimpulkan bahwa gaya dorong pembentukan ikatan kimia adalah gaya elektrostatik antara kation dan anion. Ikatan kimia yang dibentuk disebut dengan ikatan ionik.
Kulit K dan L atom natrium terisi penuh elektron, tetapi hanya ada satu elektron di kulit terluar (M). Jadi natrium dengan mudah kehilangan satu elektron terluar ini menjadi ion natrium Na+ yang memiliki konfigurasi elektron yang sama dengan atom neon Ne (1s22s22p6). Konfigurasi elektron atom khlor (1s22s22p63s23p5). Bila satu atom khlorin menangkap satu elektron untuk melengkapi kulit M-nya agar menjadi terisi penuh, konfigurasi elektronnya menjadi (1s22s22p63s23p6) yang identik dengan konfigurasi elektron argon Ar.
Pada waktu itu, sruktur kristal natrium khlorida telah dianalisis dengan analisis kristalografik sinar-X, dan keberadaan ion natrium dan khlorida telah diyakini. Jelas tidak ada pertentangan antara teori Kossel dan fakta sepanjang senyawa ion yang dijelaskan. Namun, teori ini belum lengkap, seperti dalam kasus dualisme elektrokimia, dalam hal teori ini gagal menjelaskan fakta ekesperimen seperti pembentukan senyawa hidrogen atau tidak diamatinya kation C4+ atau anion C4-.
b. Ikatan kovalen
Sekitar tahun 1916, dua kimiawan Amerika, Gilbert Newton Lewis (1875-1946) dan Irving Langmuir (1881-1957), secara independen menjelaskan apa yang tidak terjelaskan oleh teori teori Kossel dengan memperluasnya untuk molekul non polar. Titik krusial teori mereka adalah penggunaan bersama elektron oleh dua atom sebagai cara untuk mendapatkan kulit terluar yang diisi penuh elektron. Penggunaan bersama pasangan elektron oleh dua atom atau ikatan kovalen adalah konsep baru waktu itu.
Teori ini kemudian diperluas menjadi teori oktet. Teori ini menjelaskan, untuk gas mulia (selain He), delapan elektron dalam kulit valensinya disusun seolah mengisi kedelapan pojok kubus (gambar 3.3) sementara untuk atom lain, beberapa sudutnya tidak diisi elektron. Pembentukan ikatan kimia dengan penggunaan bersama pasangan elektron dilakukan dengan penggunaan bersama rusuk atau bidang kubus. Dengan cara ini dimungkinkan untuk memahami ikatan kimia yang membentuk molekul hidrogen. Namun, pertanyaan paling fundamental, mengapa dua atom hidrogen bergabung, masih belum terjelaskan. Sifat sebenarnya ikatan kimia masih belum terjawab.
Lewis mengembangkan simbol untuk ikatan elektronik untuk membentuk molekul (struktur Lewis atau rumus Lewis) dengan cara sebagai berikut.
Aturan penulisan rumus Lewis
1) Semua elektron valensi ditunjukkan dengan titik di sekitar atomnya.
2) Satu ikatan (dalam hal ini, ikatan tunggal) antara dua atom dibentuk dengan penggunaan bersama dua elektron (satu elektron dari masing-masing atom)
3) Satu garis sebagai ganti pasangan titik sering digunakan untuk menunjukkan pasangan elektron ikatan.
4) Elektron yang tidak digunakan untuk ikatan tetap sebagai elektron bebas. Titik-titik tetap digunakan untuk menyimbolkan pasangan elektron bebas.
5) Kecuali untuk atom hidrogen (yang akan memiliki dua elektron bila berikatan), atom umumnya akan memiliki delapan elektron untuk memenuhi aturan oktet. Berikut adalah contoh-contoh bagaimana cara menuliskan struktur Lewis.
Ikatan koordinat
Dengan menggabungkan teori valensi dengan teori ikatan ion dan kovalen, hampir semua ikatan kimia yang diketahui di awal abad 20 dapat dipahami. Namun, menjelasng akhir abad 19, beberapa senyawa yang telah dilaporkan tidak dapat dijelaskan dengan teori Kekulé dan Couper. Bila teori Kekulé dan Couper digunakan untuk mengintepretasikan struktur garam luteo, senyawa yang mengandung kation logam dan aminua dengan rumus rasional Co(NH3)6Cl3, maka struktur singular (gambar 3.4(a)) harus diberikan.
Struktur semacam ini tidak dapat diterima bagi kimiawan Swiss Alfred Werner (1866-1919). Ia mengusulkan bahwa beberapa unsur termasuk kobal memiliki valensi tambahan, selain valensi yang didefinisikan oleh Kekulé dan Couper, yang oleh Werner disebut dengan valensi utama. Menuru Werner, atom kobalt dalam garam luteo berkombinasi dengan tiga anion khlorida dengan valensi utamanya (trivalen) dan enam amonia dengan valensi tambahannya (heksavalen) membentuk suatu oktahedron dengan atom kobaltnya di pusat (gambar 3.4(b)).
Gambar 3.4 Dua struktur yang diusulkan untuk garam luteo.
Setelah melalui debat panjang, kebenaran teori Werner diterima umum, dan diteumkan bahwa banyak senyawa lain yang memiliki valensi tambahan. Dalam senyawa-senyawa ini, atomnya (atau ionnya) yang memerankan peranan kobalt disebut dengan atom pusat, dan molekul yang memerankan seperti amonia disebut dengan ligan.
Sifat sebenarnya dari valensi tambahan ini diungkapkan oleh kimiawan Inggris Nevil Vincent Sidgewick (1873-1952). Ia mengusulkan sejenis ikatan kovalen dengan pasangan elektron yang hanya disediakan oleh salah satu atom, yakni ikatan koordinat.. Jadi atom yang menerima pasangan elektron harus memiliki orbital kosong yang dapat mengakomodasi pasangan elektron. Kekulé telah mengungkapkan amonium khlorida sebagai NH3・HCl. Menurut Sidgewick, asuatu iktan koordiant dibentuk oleh atom nitrogen dari amonia dan proton menghasilkan ion amonium NH4+, yang selanjutnya membentuk ikatan ion dengan ion khlorida menghasilkan amonium khlorida.
Amonia adalah donor elektron karena mendonorkan pasangan elektron, sementara proton adalah akseptor elektron karena menerima pasangan elejtron di dalam orbital kosongnya.
Dalam hal garam luteo, ion kobalt memiliki enam orbital kosong yang dapat membentuk ikatan koordinat dengan amonia. Alasan mengapa ion kobalt memiliki enam orbital kosong akan dijelaskan di baba 5.
SOAL DAN JAWABAN TENTANG TEORI IKATAN KIMIA
1) Apa yang dimaksud dengan teori atom?
Jawab: Teori atom adalah premis untuk konsep ikatan kimia.
2) Teori ikatan kimia apa saja yang ada pada sebelum abad 20?
Jawab: ada 3 yaitu:
-alfinitas kimia
-dualisme elektrokimia
-teori valensi
3) Teori ikatan kimia apa saja yang ada pada masa bohr?
Jawab: ada 3 yaitu:
-ikatan ionik
-ikatan kovalen
-ikatan koordinat
4) Apa yang dimaksud dengan dualisme elektrokomia?
Jawab: Dualisme elektrokimia adalah teori ikatan kimia rasional yang pertama, dan teori ini diusulkan oleh Davy, Berzelius dkk di pertengahan pertama abad 19.
5) Bagaimana aturan penulisan rumus lewis?
Jawab: ada 5 yaitu:
1) Semua elektron valensi ditunjukkan dengan titik di sekitar atomnya.
2) Satu ikatan (dalam hal ini, ikatan tunggal) antara dua atom dibentuk dengan penggunaan bersama dua elektron (satu elektron dari masing-masing atom)
3) Satu garis sebagai ganti pasangan titik sering digunakan untuk menunjukkan pasangan elektron ikatan.
4) Elektron yang tidak digunakan untuk ikatan tetap sebagai elektron bebas. Titik-titik tetap digunakan untuk menyimbolkan pasangan elektron bebas.
5) Kecuali untuk atom hidrogen (yang akan memiliki dua elektron bila berikatan), atom umumnya akan memiliki delapan elektron untuk memenuhi aturan oktet. Berikut adalah contoh-contoh bagaimana cara menuliskan struktur Lewis.
Sumber: www.chem-is-try.org
Dirangkum oleh: Fachturrizki R
a. Metoda Heitler dan London
Sebagaimana dipaparkan di bagian 2.3, teori Bohr, walaupun merupakan model revolusioner, namun gagal menjelaskna mengapa atom membentuk ikatan. Teori Lewis-Langmuir tentang ikatan kovalen sebenarnya kualitatif, dan gagal memberikan jawaban pada pertanyaan fundamental mengapa atom membentuk ikatan, atau mengapa molekul lebih stabil daripada dua atom yang membentuknya.
Masalah ini diselesaikan dengan menggunakan mekanika kuantum (mekanika gelombang). Segera setelah mekanika kuantum dikenalkan, fisikawan Jerman Walter Heitler (1904-1981) dan fisikawan Jerman/Amerika Fritz London (1900-1954) berhasil menjelaskan pembentukan molekul hidrogen dengan penyelesaian persamaan gelombang sistem yang terdiri atas dua atom hidrogen dengan pendekatan. Sistemnya adalah dua proton dan dua elektron (gambar 3.5(a)). Mereka menghitung energi sistem sebagai fungsi jarak antar atom dan mendapatkan bahwa ada lembah dalam yang berkaitan dengan energi minimum yang diamati dalam percobaan (yakni pada jarak ikatan) tidak dihasilkan. Mereka mengambil pendekatan lain: mereka menganggap sistem dengan elektron yang posisinya dipertukarkan (gambar 3.5(b)), dan menghitung ulang dengan asumsi bahwa dua sistem harus menyumbang sama pada pembentukan ikatan. Mereka mendapatkan kemungkinan pembentukan ikatan meningkat, dan hasil yang sama dengan hasil percobaan diperoleh.
Dua keadaan di gambar 3.5 disebut “beresonansi”. Perbedaan energi antara plot (a) dan (b) disebut energi resonansi. Enerhi di gambar 3.6(d) adalah energi untuk keadaan dengan spin dua elektronnya sejajar. Dalam keadaan ini, tolakannya dominan, yang akan mendestabilkan ikatan, yakni keadaan antibonding. Metoda Heitler dan London adalah yang pertama berhasil menjelaskan dengan kuantitatif ikatan kovalen. Metoda ini memiliki potensi untuk menjelaskan tidak hanya ikatan yang terbentuk dalam molekul hidroegn, tetapi ikatan kimia secara umum.
b. Pendekatan ikatan valensi
Marilah kita perhatikan metoda Heitler dan London dengan detail. Bila dua atom hidrogen dalam keadaan dasar pada jarak tak hingga satu sama lain, fungsi gelombang sistemnya adalah 1s1(1)1s2(2) (yang berkaitan dengan keadaan dengan elektron 1 berkaitan dengan proton 1 dan elektron 2 berhubungan dengan proton 2 sebagaimana diperlihtakna di gambar 3.5(a) (atau 1s1(2)1s2(1) yang berkaitan dengan keadaan dimana elektron 2 terikat di proton 1 dan elektron 1 berikatan dengan proton 2 sebagaimana diperlihatkan gambar 3.5(b)). Bila dua proton mendekat, menjadi sukar untuk membedakan dua proton. Dalam kasus ini, sistemnya dapat didekati dengan mudah kombinasi linear dua fungsi gelombang. Jadi,
Ψ+ = N+[1s1(1)1s2(2) +1s1(2)1s2(1)] (3.1)
Ψ-= N-[1s1(1)1s2(2) – 1s1(2)1s2(1)] (3.2)
dengan N+ dan N- adalah konstanta yang menormalisasi fungsi gelombangnya. Dengan menyelesaikan persamaan ini, akan diperoleh nilai eigen E+ dan E- yang berkaitan dengan gambar. 3.6(a) dan 3.6(b).
Metoda yang dipaparkan di atas disebut dengan metoda ikatan valensi (valence-bond/VB). Premis metoda VB adalah molekul dapat diungkapkan dengan fungsi-fungsi gelombang atom yang menyusun molekul. Bila dua elektron digunakan bersama oleh dua inti atom, dan spin kedua elektronnya antiparalel, ikatan yang stabil akan terbentuk.
Pendekatan orbital molekul
Metoda VB dikembangkan lebih lanjut oleh ilmuwan Amerika termasuk John Clarke Slater (1900-1978) dan Linus Carl Pauling (1901-1994). Namun, kini metoda orbital molekul (molecular orbital, MO) jauh lebih populer. Konsep dasar metoda MO dapat dijelaskan dengan mudah dengan mempelajari molekul tersederhana, ion molekul H2+ (gambar 3.7).
(-h2/8π2m)∇2Ψ + VΨ = EΨ (2.21)maka,(-h2/8π2m)∇2Ψ +e2/4πε0[(-1/r1) -(1/r2) + (1/R)]Ψ = EΨ (3.3)
Ingat bahwa Ψ2 memberikan kebolehjadian menemukan elektron di dalam daerah tertentu. Bila Anda jumlahkan fungsi ini di seluruh daerah, Anda akan dapatkan kebolehjadian total menemukan elektron, yang harus sama dengan satu. Orbital biasanya dinormalisasi agar memenuhi syarat ini, yakni ∫Ψ2 dxdydz = 1.
Fungsi gelombang sistem ini didapatkan dengan mensubstitusi potensialnya kedalam persamaan 2.21. Bila elektronnya di sekitar inti 1, pengaruh inti 2 dapat diabaikan, dan orbitalnya dapat didekati dengan fungsi gelombang 1s hidrogen di sekitar inti 1. Demikian pula, bila elektronnya di sekitar inti 2, pengaruh inti 1 dapat diabaikan, dan orbitalnya dapat didekati dengan fungsi gelombang 1s hidrogen di sekitar inti 2.
Kemudian kombinasi linear dua fungsi gelombang 1s dikenalkan sebagai orbital molekul pendekatan bagi orbital molekul H2. Untuk setiap elektron 1 dan 2, orbital berikut didapatkan.
φ+(1) = a[1s1(1) + 1s2(1)]
φ+(2) = a[1s1(2) + 1s2(2)] (3.4)
Orbital untuk molekul hidrogen haruslah merupakan hasilkali kedua orbital atom ini.
Jadi,
Ψ+(1, 2) = φ+(1)・φ+(2) = a[1s1(1) + 1s2(1)] x a[1s1(2) + 1s2(2)]
= a2[1s1(1) 1s1(2) + 1s1(1) 1s2(2) + 1s1(2)1s2(1) + 1s2(1) 1s2(2)] (3.5)
Orbital ini melingkupi seluruh molekul, dan disebut dengan fungsi orbital molekul, atau secara singkat orbital molekul. Seperti juga, orbital satu elektron untuk atom disebut dengan fungsi orbital atom atau secara singkat orbital atom. Metoda untuk memberikan pendekatan orbital molekul dengan melakukan kombinasi linear orbital atom disebut dengan kombinasi linear orbital atom (linear combination of atomic orbital, LCAO).
SOAL DAN JAWABAN TENTANG TEORI KUANTUM IKATAN KIMIA
1) Apa fungsi dari menghitung energi sistem?
Jawab: sebagai fungsi jarak antar atom dan mendapatkan bahwa ada lembah dalam yang berkaitan dengan energi minimum yang diamati dalam percobaan (yakni pada jarak ikatan) tidak dihasilkan.
2) Terdiri dari apa saja sistem yang digunakan untuk penyelesaiaan persamaan gelombang?
Jawab: terdiri atas dua atom hidrogen dengan pendekatan. Sistemnya adalah dua proton dan dua elektron.
3) Apa yang dimaksud dengan premis metoda VB?
Jawab: adalah molekul dapat diungkapkan dengan fungsi-fungsi gelombang atom yang menyusun molekul.
4) Bagaimana cara agar ikatan stabil terbentuk?
Jawab: yaitu bila dua elektron digunakan bersama oleh dua inti atom, dan spin kedua elektronnya antiparalel.
5) Apa yang dimaksud dengan linear combination of atomic orbital, LCAO?
Jawab: orbital satu elektron untuk atom disebut dengan fungsi orbital atom atau secara singkat orbital atom. Metoda untuk memberikan pendekatan orbital molekul dengan melakukan kombinasi linear orbital atom.
Sumber: www.chem-is-try.org
Dirangkum oleh: Fachturrizki R
a. Ikatan logam
Setelah penemuan elektron, daya hantar logam yang tinggi dijelaskan dengan menggunakan model elektron bebas, yakni ide bahwa logam kaya akan elektron yang bebas bergerak dalam logam. Namun, hal ini tidak lebih dari model. Dengan kemajuan mekanika kuantum, sekitar tahun 1930, teori MO yang mirip dengan yang digunakan dalam molekul hidrogen digunakan untuk masalah kristal logam.
Elektron dalam kristal logam dimiliki oleh orbital-orbital dengan nilai energi diskontinyu, dan situasinya mirip dengan elektron yang mengelilingi inti atom. Namun, dengan meingkatnya jumlah orbital atom yang berinteraksi banyak, celah energi dari teori MO menjadi lebih sempit, dan akhirnya perbedaan antar tingkat-tingkat energi menjadi dapat diabaikan. Akibatnya banyak tingkat energi akan bergabung membentuk pita energi dengan lebar tertentu. Teori ini disebut dengan teori pita.
Tingkat energi logam magnesium merupakan contoh teori pita yang baik (Gambar 3.8). Elektron yang ada di orbital 1s, 2s dan 2p berada di dekat inti, dan akibatnya terlokalisasi di orbital-orbital tersebut. Hal ini ditunjukkan di bagian bawah Gambar 3.8. Namun, orbital 3s dan 3p bertumpang tindih dan bercampur satu dengan yang lain membentuk MO. MO ini diisi elektron sebagian, sehingga elektron-elektron ini secara terus menerus dipercepat oleh medan listrik menghasilkan arus listrik. Dengan demikian, magnesium adalah konduktor.
Bila orbital-orbital valensi (s) terisi penuh, elektron-elektron ini tidak dapat digerakkan oleh medan listrik kecuali elektron ini lompat dari orbital yang penuh ke orbital kosong di atasnya. Hal inilah yang terjadi dalam isolator.
b. Ikatan hidrogen
Awalnya diduga bahwa alasan mengapa hidrogen fluorida HF memiliki titik didih dan titik leleh yang lebih tinggi dibandingkan hidrogen halida lain (gambar 3.9) adalah bahwa HF ada dalam bentuk polimer. Alasan tepatnya tidak begitu jelas untuk kurun waktu yang panjang. Di awal tahunh 1920-an, dengan jelas diperlihatkan bahwa polimer terbentuk antara dua atom flourin yang mengapit atom hidrogen.
Sangat tingginya titik didih dan titik leleh air juga merupakan masalah yang sangat menarik. Di awal tahun 1930-an, ditunjukkan bahwa dua atom oksigen membentk ikatan yang mengapit hidrogen seperti dalam kasus HF (gambar 3.9). Kemudian diketahui bahwa ikatan jenis ini umum didapatkan dan disebut dengan ikatan hidrogen.
Ikatan hidrogen dengan mudah terbentuk bila atom hidroegen terikat pada atom elektronegatif seperti oksigen atau nitrogen. Fakta bahwa beberapa senyawa organik dengan gugus hidroksi -OH atau gugus amino -NH2 relatif lebih larut dalam air disebabkan karena pembentukan ikatan hidrogen dengan molekul air. Dimerisasi asam karboksilat seperti asama asetat CH3COOH juga merupakan contoh yang sangat baik adanya ikatan hidrogen.
Ikatan Van der Waals
Gaya dorong pembentukan ikatan hidrogen adalah distribusi muatan yang tak seragam dalam molekul, atau polaritas molekul (dipol permanen). Polaritas molekul adalah sebab agregasi molekul menjadi cair atau padat. Namun, molekul non polar semacam metana CH4, hidrogen H2 atau He (molekul monoatomik) dapat juga dicairkan, dan pada suhu yang sangat rendah, mungkin juga dipadatkan. Hal ini berarti bahwa ada gaya agreagasi antar molekul-molekul ini.. Gaya semacam ini disebut dengan gaya antarmolekul.
Ikatan hidrogen yang didiskusikan di atas adalah salah satu jenis gaya antarmolekul. Gaya antarmolekul khas untuk molekul non polar adalah gaya van der Waals. Asal usul gaya ini adalah distribusi muatan yang sesaat tidak seragam (dipol sesaat) yang disebabkan oleh fluktuasi awan elektron di sekitar inti. Dalam kondisi yang sama, semakin banyak jumlah elektron dalam molekul semakin mudah molekul tersebut akan dipolarisasi sebab elektron-elektronnya akan tersebar luas. Bila dua awan elektron mendekati satu sama lain, dipol akan terinduksi ketika awan elektron mempolarisasi sedemikian sehingga menstabilkan yang bermuatan berlawanan. Dengan gaya van der Waals suatu sistem akan terstabilkan sebesar 1 kkal mol-1. Bandingkan harga ini dengan nilai stabilisasi yang dicapai dengan pembentukan ikatan kimia (dalam orde 100 kkal mol-1). Kimiawan kini sangat tertarik dengan supramolekul yang terbentuk dengan agregasi molekul dengan gaya antarmolekul.
SOAL DAN JAWABAN TENTANG JENIS IKATAN KIMIA
1) Ada berapa ikatan dalam jenis ikatan kimia, sebutkan?
Jawab: ada 3 yaitu:
-ikatan logam
-ikatan hidrogen
-ikatan van der waals
2) Apa yang dimaksud dengan teori pita dalam ikatan logam?
Jawab: Elektron dalam kristal logam dimiliki oleh orbital-orbital dengan nilai energi diskontinyu, dan situasinya mirip dengan elektron yang mengelilingi inti atom. Namun, dengan meingkatnya jumlah orbital atom yang berinteraksi banyak, celah energi dari teori MO menjadi lebih sempit, dan akhirnya perbedaan antar tingkat-tingkat energi menjadi dapat diabaikan. Akibatnya banyak tingkat energi akan bergabung membentuk pita energi dengan lebar tertentu.
3) Hal-hal apa saja yang tejadi pada isolator?
Jawab: Bila orbital-orbital valensi (s) terisi penuh, elektron-elektron ini tidak dapat digerakkan oleh medan listrik kecuali elektron ini lompat dari orbital yang penuh ke orbital kosong di atasnya.
4) Dari manakah polimer tebentuk?
Jawab: polimer terbentuk antara dua atom flourin yang mengapit atom hidrogen.
5) Bagaimana cara agar ikatan hidrogen terbentuk dengan mudah?
Jawab: dengan cara atom hidroegen harus terikat pada atom elektronegatif seperti oksigen atau nitrogen.
Sumber: www.che-is-try.org
Dirangkum oleh: Fachturrizki R
Ikatan ionik dibentuk oleh tarikan elekrostatik antara kation dan anion. Karena medan listrik suatu ion bersimetri bola, ikatan ion tidak memiliki karakter arah. Sebaliknya, ikatan kovalen dibentuk dengan tumpang tindih orbital atom. Karena tumpang tindih sedemikian sehingga orbital atom dapat mencapai tumpang tindih maksimum, ikatan kovalen pasti bersifat terarah. Jadi bentuk molekul ditentukan oleh sudut dua ikatan, yang kemudian ditentukan oleh orbital atom yang terlibat dalam ikatan.
Paparan di atas adalah pembahasan umum struktur molekul. Struktur molekul sederhana dapat disimpulkan dari pertimbangan sterekimia sederhana yang akan dijelaskan di bab ini.
a. Teori tolakan pasangan elektron valensi
Di tahuan 1940, Sidgwick mengusulkan teori yang disebut dengan Teori tolakan pasangan elektron valensi [valence shell electron pair repulsion (VSEPR)], yang karena sifat kualitatifnya sangat mudah dipahami. Teorinya sangat cocok untuk mempredksi struktur senyawa berjenis XYm. Menurut teori ini, jumlah pasangan elektron menentukan penyusunan pasangan-pasangan elektron di sekitar atom pusat molekul. Terdapat gaya tolak elektrostatik antara dua pasangan elektron yang cenderung menolak orbital atom sejauh mungkin satu sama lain. Karena pasangan elektron menempati orbital atom, pasangan elektron bebas juga mempunyai dampak yang sama dengan pasangan elektron ikatan. Dengan kata lain, pasangan elektron bebas dan pasangan elektron ikatan juga tolak menolak sejauh mungkin.
SENYAWA DENGAN ATOM PUSAT DIVALEN
Menurut teori VSEPR, dua pasangan elektron yang dimiliki atom pusat divalen akan terpisah sejauh mungkin bila sudut ikatannya 180°. Dengan kata lain, molekulnya akan memiliki struktur linear. Faktanya, berilium khlorida BeCl2, dengan atom pusat divalen, adalah molekul linear . Seperti akan didiskusikan kemudian, beberapa senyawa seperti karbon dioksida O=C=O dan alena H2C=C=CH2 juga linear seolah memiliki atom pusat divalen.
SENYAWA DENGAN ATOM PUSAT TRIVALEN
Bila teori VSEPR berlaku juga untuk senyawa dengan atom pusat trivalen seperti boron trikhlorida BCl3, sudut ikatan ∠Cl-B-Cl akan bernilai 120° dengan emapt atom itu berada dalam bidang yang sama. Struktur trigonal planar juga diamati di timah khlorida, SnCl3. Catat juga bahwa struktur segitiga juga diamati di etilena H2C=CH2, ion nitrat NO3 dan sulfur dioksida SO2.
SENYAWA DENGAN ATOM PUSAT TETRAVALEN
Teori karbon tetrahedral diusulkan oleh kimiawan Belanda Jacobus Henricus van’t Hoff (18521911) dan kimiawan Perancis Joseph Achille Le Bel (1847-1930), yang menyempurnakan teorinya hampir pada saat yang bersamaan. Kesimpulan yang sama juga dapat secara otomatis didapatkan dari teori VSEPR. Misalnya untuk metana, struktur yang akan memiliki tolakan antar pasangan elektron yang minimal didapatkan untuk geometri tetrahedron dengan sudut 109,5°, yang jelas lebih besar dari bujur sangakar yang bersudut 90°. Menariknya ion amonium NH4+ dengan atom nitrogen sebagai atom pusat juga tetrahedral seperti metana. Bila pasangan elektron bebas juga dihitung, atom nitrogen dari amonia NH3 dan atom oksigen dalam air H2O juga dapat dianggap
tetravalen. Namun di molekul-molekul ini tidak didapat tetrahedral sempurna, sudut ikatan ∠HNH adalah 106° dan ∠H-O-H adalah 104,5°. Fakta ini menyarankan hubungan kualitatif berikut.
Kekuatan relatif tolakan
Pasangan elektron bebas (PEB)-PEB > PEB- Pasangan elektron ikatan (PEI) > PEI-PEI Beberapa ion poliatomik semacam SO42- dan SO32- juga memiliki struktur tetrahedral.
SENYAWA DENGAN VALENSI LEBIH TINGGI DARI EMPAT
Struktur senyawa dengan atom pusat memiliki valensi lebih besar dari empat juga dapat dijelaskan dengan teori VSEPR. Senyawa pentavalen memiliki struktur trigonal bipiramidal. Senyawa khas jenis ini adalah fosfor pentakhlorida PCl5. Senyawa dengan atom pusat heksavalen berstruktur oktahedral, yang identik dengan bujur sangkar bipiramid. Contoh yang baik adalah belerang heksafluorida SF6. Dalam kasus senyawa heptavalen, situasinya sama dan strukturnya adalah pentagonal bipiramid.
Ketika menggunakan teori ini, dalam senyawa yang strukturnya ditentukan pasangan elektron bebas harus diikutsertakan sebagai bagian pasangan elekron yang menentukan struktur. Misalnya untuk IF5 dan ICl4 hal ini sangat penting. Di Gambar 4.1 ditunjukkan beberapa struktur senyawa khas.
(c) segitiga bipiramid PCl5; (d) oktahedron SF6.
b. Hibridisasi orbital atom
Diharapkan bahwa berilium khlorida BeCl2 dan timah (II) khlorida SnCl2 akan memiliki struktur yang mirip karena memiliki rumus molekul yang mirip. Namun, ternyata senyawa pertama berstruktur linear sedang yang kedua bengkok. Hal ini dapat dijelaskan dengan perbedaan orbital atom yang digunakan. Bila elektron-elektron mengisi orbital atom mengikuti prinsip Aufbau, elektron akan mengisi orbital atom yang berenergi terendah. Dua elektron diizinkan mengisi satu orbital. Menurut prinsip Pauli, tidak ada elektron yang memiliki satu set bilangan kuantum yang tepat sama (Bab 2.4 (d)). Masalah yang timbul adalah akan diletakkan di mana elektron ke-empat atom karbon. Telah ditetapkan bahwa konfigurasi elektron terendah atom adalah konfigurasi dengan jumlah elektron tak berpasangan maksimum dan masih tetap diizinkan oleh aturan Pauli dalam set orbital dengan energi yang sama (dalam kasus karbon adalah tiga orbital 2p). Dalam kasus ini awalnya semua elektron akan memiliki bilangan kuantum spin yang sama (yakni, +1/2 atau -1/2) (Gambar 4.2).
Berilium adalah atom dengan dua elektron valensi dan konfigurasi elektron (1s22s2). Agar berilium membentuk ikatan sebagai atom divalen, orbital 2s dan 2p harus membentuk pasangan orbital terhibridisasi sp. Karena kedua orbital hibrida sp membentuk sudut ikatan 180°, BeCl2 dengan demikian linear.
Mirip dengan itu, boron yang memiliki tiga elektron valensi dan konfigurasi elektron 1s22s22p1; atau secara sederhana ditulis 1s22s22p. Untuk membentuk ikatan dengan valensi tiga, konfigurasi elektronnya harus (1s22s2px2py). Satu orbital 2s dan dua orbital 2p akan membentuk orbital terhibridisasi sp2. Karena sudut ikatan antara dua orbital hibrida sp2 adalah 120°, BCl3 berstruktur segitiga.
Dalam kasus senyawa karbon, strukturnya dijelaskan dengan mengasumsikan empat orbital sp3 ekuivalen terbentuk dari satu orbital 2s dan tiga orbital 2p. Atom karbon memiliki empat elektron valensi, dan konfigurasi elektronnya adalah 1s22s22p2, dan untuk membentuk atom tetravalen, konfigurasi elektronnya harus berubah menjadi (1s22s2px2py2pz). Dengan hibridisasi, empat orbital hibrida sp3 yang ekuivalen akan terbentuk. Sudut ikatan yang dibuat oleh dua orbital hibrida sp3 adalah 109,5° (sudut tetrahedral). Inilah alasan mengapa metana berstruktur tetrahedral.
Untuk kasus senyawa nitrogen, amonia NH3 misalnya, empat dari lima elektron valensi atom nitrogen akan menempati empat orbital hibrida sp3 seperti ditunjukkan di Gambar 4.3. Satu elektron valensi yang tersisa akan menempati satu orbital hibrida yang telah diisi satu elektron. Jadi spin elektron kedua ini harus berlawanan dengan spin elekron pertama. Akibatnya atom nitrogen akan trivalen dengan satu pasangan elektron bebas.
Dalam kasus fosfor, ada dua kasus. Dalam satu kasus atom fosfornya trivalen dengan satu pasang elektron bebas seperti nitrogen, dan di satu kasus lain fosfornya pentavalen dengan orbital hibrida dsp3. Fosfor pentavalen memiliki struktur trigonal bipiramidal. Ion kompleks dengan ion nikel atau kobal sebagai atom pusat berkoordinasi enam dengan struktur oktahedral.
Sebagaimana didiskusikan di atas, baik teori VSEPR maupun hibridisasi orbital atom akan memberikan kesimpulan struktur molekul dan ion yang sama. Walaupun teori VSEPR hanya bergantung pada tolakan antar pasangan elektron, dan teori hibridisasi memberikan justifikasi teoritisnya.
SOAL DAN JAWABAN TENTANG STRUKTUR MOLEKUL SEDERHANA
1) Dari mana ikatan ion dibentuk?
Jawab: Ikatan ionik dibentuk oleh tarikan elekrostatik antara kation dan anion.
2) Dari mana dibentuk ikatan kovalen?
Jawab: ikatan kovalen dibentuk dengan tumpang tindih orbital atom. Karena tumpang tindih sedemikian sehingga orbital atom dapat mencapai tumpang tindih maksimum, ikatan kovalen pasti bersifat terarah.
3) Apa itu yang dimaksud tentang teori tolakan pasangan elektron valensi?
Jawab: Menurut teori ini, jumlah pasangan elektron menentukan penyusunan pasangan-pasangan elektron di sekitar atom pusat molekul. Terdapat gaya tolak elektrostatik antara dua pasangan elektron yang cenderung menolak orbital atom sejauh mungkin satu sama lain. Karena pasangan elektron menempati orbital atom, pasangan elektron bebas juga mempunyai dampak yang sama dengan pasangan elektron ikatan. Dengan kata lain, pasangan elektron bebas dan pasangan elektron ikatan juga tolak menolak sejauh mungkin.
4) Apa yang dimaksud dengan konfigurasi terendah atom?
Jawab: adalah konfigurasi dengan jumlah elektron tak berpasangan maksimum dan masih tetap diizinkan oleh aturan Pauli dalam set orbital dengan energi yang sama (dalam kasus karbon adalah tiga orbital 2p). Dalam kasus ini awalnya semua elektron akan memiliki bilangan kuantum spin yang sama (yakni, +1/2 atau -1/2).
5) Apa itu yang dimaksud engan berilium?
Jawab: Berilium adalah atom dengan dua elektron valensi dan konfigurasi elektron (1s22s2).
Sumber: www.chem-is-try.org
Dirangkum oleh: Fachturrizki R
a. Keisomeran karena atom karbon asimetrik, keisomeran optik
Sebelum ada teori valensi, kimiawan/fisiologis Perancis Louis Pasteur (1822-1895) telah mengenali pengaruh struktur molekul individual pada sifat gabungan molekul. Ia berhasil memisahkan asam rasemat tartarat (sebenarnya garam natrium amonium) menjadi (+) dan (-) berdasarkan arah muka hemihedral kristalnya (1848).
Kedua senyawa memiliki sifat fisika (misalnya titik leleh) dan kimia yang sama, tetapi ada perbedaan dalam sifat optik dalam larutan masing-masing senyawa. Keduanya memutar bidang polarisasi cahaya, dengan kata lain mempunyai keaktifan optik. Rotasi jenis kedua senyawa, yang mengkur kekuatan rotasi kedua senyawa, memiliki nilai absolut yang sama, namun tandanya berlawanan. Karena molekul berada bebas dalam larutan, perbedaan ini tidak dapat dijelaskan karena perbedaan struktur kristal. Sayangnya waktu itu, walaupun teori atom sudah ada, teori valensi belum ada. Dengan kondisi seperti ini Pasteur tidak dapat menjelaskan penemuannya.
Di tahun 1860-an, kimiawan Jerman Johannes Adolf Wislicenus (1835-1902) menemukan bahwa dua jenis asam laktat yang diketahui waktu itu keduanya adalah asam α-hidroksipropanoat CH3CH(OH)COOH, bukan asam β- hidroksipropanoat HOCH2CH2COOH. Ia lebih lanjut menyarankan bahwa konsep baru untuk stereoisomer harus dibuat untuk menjelaskna fenomena ini. Konse baru ini menyatakan bahwa kedua senyawa yang memiliki rumus struktur yang sama dalam dua dimensu dapat menjadi stereoisomer bila susunan atom-atomnya di ruang berbeda.
Di tahun 1874, van’t Hoff dan Le Bel secara independen mengusulkan teori atom karbon tetrahedral. Menurut teori ini, kedua asam laktat yang dapat digambarkan di Gambar 4.4. Salah satu asam laktat adalah bayangan cermin asam laktat satunya. Dengan kata lain, hubungan kedua senyawa seperti hubungan tangan kanan dan tangan kiri, dan oleh karena itu disebut dengan antipoda atau enantiomer. Berkat teori van’t Hoff dan Le Bel, bidang kimia baru, stereokimia, berkembang dengan cepat.
(+)-asam laktat (-)-lactic acid
Gambar 4.4 Stereoisomer asam laktat.
Kedua isomer atau antipoda, berhubungan layaknya tangan kanan dan kiri
Pada atom karbon pusat di asam laktat, empat atom atau gigus yang berbeda terikat. Atom karbon semacam ini disebut dengan atom karbon asimetrik. Umumnya, jumlah stereoisomer akan sebanyak 2n, n adalah jumlah atom karbon asimetrik. Asam tartarat memiliki dua atom karbon asimetrik. Namun, karena keberadaan simetri molekul, jumlah stereoisomernya kurang dari 2n, dan lagi salah satu stereoisomer secara optik tidak aktif (Gambar 4.5). Semua fenomena ini dapat secara konsisten dijelaskan dengan teori atom karbon tetrahedral.
(+)-asam tartarat (-)-asam tartarat meso-asam tartarat
Gambar 4.5 Stereoisomer asam tartarat(+)-asam tartarat dan (-)-asam tartarat membentuk pasangan enantiomer.
Namun karena adanya simetri, meso-asam tartarat secara optik tidak aktif.
b. Isomer geometri
Van’t Hoff menjelaskan keisomeran asam fumarat dan maleat karena batasan rotasi di ikatan ganda, suatu penjelasan yang berbeda dengan untuk keisomeran optik. Isomer jenis ini disebut dengan isomer geometri. Dalam bentuk trans subtituennya (dalam kasus asam fumarat dan maleat, gugus karboksil) terletak di sisi yang berbeda dari ikatan rangkap, sementara dalam isomer cis-nya subtituennya terletak di sisi yang sama.
Dari dua isomer yang diisoasi, van’t Hoff menamai isomer yang mudah melepaskan air menjadi anhidrida maleat isomer cis sebab dalam isomer cis kedua gugus karboksi dekat satu sama lain. Dengan pemanasan sampai 300 °C, asam fuarat berubah menjadi anhidrida maleat. Hal ini cukup logis karena prosesnya harus melibatkan isomerisasi cis-trans yang merupakan proses dengan galangan energi yang cukup tinggi (Gambar 4.6).
Karena beberapa pasangan isomer geometri telah diketahui, teori isomer geometri memberikan dukunagn yang baik bagi teori struktural van’t Hoff.
asam fumarat asam maleat anhidrida maleat
Gambar 4.6 Isomer geometri asam maleat (bentuk cis) mempunyai dua gugus karboksil yang dekat, dan mudah melepas air menjadi anhidrida (anhidrida maleat).
Struktur benzen
Struktur benzen menjadi enigma beberapa tahun. Di tahun 1865, Kekulé mengusulkan struktur siklik planar dengan tiga ikatan tunggal dan tiga ikatan ganda yang terhubungkan secara bergantian. Strukturnya disebut dengan struktur Kekulé. Bukti struktur semacam ini datang dari jumlah isomer benzen tersubstitusi. Dengan struktur Kekulé, akan ada tiga isomer kresol, yakni, o, m- dan p-kresol (Gambar 4.7).
Struktur Kekulé tidak dapat menyelesaikan semua masalah yang berkaitan dengan struktur benzene. Bila benzene memiliki struktur seperti yang diusulkan Kekulé, akan ada dua isomer okresol, yang tidak diamati. Kekulé mempostulatkan bahwa ada kesetimbangan cepat, yang disebut dengan resonansi antara kedua struktur. Istilah resonansi kemudian digunakan dalam mekanika kuantum.
d. Struktur etana: analisis konformasional
Teori atom karbon tetrahedral dan struktur benzene memberikan fondasi teori struktur senyawa organik. Namun, van’t Hoff dan kimiawan lain mengenali bahwa masih ada masalah yang tersisa dan tidak dapat dijelaskan dengan teori karbon tetrahedral. Masalah itu adalah keisomeran yang disebabkan oleh adanya rotasi di sekitar ikatan tunggal.
Bila rotasi di sekitar ikatan C-C dalam 1,2-dikhloroetana CH2ClCH2Cl terbatas sebagaimana dalam kasus asam fumarat dan maleat, maka akan didapati banyak sekali isomer. Walaupun van’t Hoff awalnya menganggap adanya kemungkinan seperti itu, ia akhirnya menyimpulkan bahwa rotasinya bebas (rotasi bebas) karena tidak didapati isomer rotasional akibat batasan rotasi tersebut. Ia menambahkan bahwa struktur yang diamati adalah rata-rata dari semua struktur yang mungkin.
Di tahun 1930-an dibuktikan dengan teori dan percobaan bahwa rotasi di sekitar ikatan tunggal tidak sepenuhnya bebas. Dalam kasus etana, tolakan antara atom hidrogen yang terikat di atom karbon dekatnya akan membentuk halangan bagi rotasi bebas, dan besarnya tolakan akan bervariasi ketika rotasi tersebut berlangsung. Gambar 4.8(a) adalah proyeksi Newman etana, dan Gambar 4.8(b) adalah plot energi-sudut torsi.
Gambar 4.8 Analisis konformasional.
Dalam gambar (a) (proyeksi Newman), Anda dapat melihat molekul di arah ikatan C-C. Atom karbon depan dinyatakan dengan titik potong tiga garis pendek (masing-masing mewakili ikatan CH) sementara lingkaran mewakili arom karbon yang belakang. Keseluruhan gambar akan berkaitan dengan proyeksi molekul di dinding di belakangnya. Demi kesederhanaan atom hidrogennya tidak digambarkan (b) Bila sudut orsinya 0°, 120°, 240° dan 360°, bagian belakang molekul “berimpitan” eclipsed dengan bagian depan. Bila anda menggambarkan proyeksi Newman dengan tepat berimpit, anda sama sekali tidak dapat melihat bagian belakang. Secara konvensi, bagian belakang diputar sedikit agar dapat dilihat.
Bila sudut rotasi (sudut torsi) 0°, 60°, 120° dan 180°, energi molekul kalau tidak maksimum akan minimum. Struktur (konformasi) dengan sudut torsi 0° atau 120° disebut dengan bentuk eklips, dan konformasi dengan sudut torsi 60°atau 180° disebut bentuk staggered. Studi perubahan >struktur molekular yang diakibatkan oleh rotasi di sekitar ikatan tunggal disebut dengan analisis konformasional. Analisis ini telah berkembang sejak tahun 1950-an hingga kini.
Analisis konformasional butana CH3CH2CH2CH3 atas rotasi di sekitar ikatan C-C pusat, mengungkapkan bahwa ada dua bentuk staggered. Bentuk trans, dengan dua gugus metil terminal di sisi yang berlawanan, berenergi 0,7 kkal mol–1 lebih rendah (lebih stabil) daripada isomer gauche yang dua gugus metilnya berdekatan.
Hasil ini dapat diperluas ke senyawa-senyawa semacam pentana dan heksana yang memiliki lingkungan metilena tambahan, dan akhirnya pada poloetilena yang dibentuk oleh sejumlah besar metilen yang terikat. Dalam semua analisis ini, struktur trans, yakni struktur zig zag, adalah yang paling stabil. Namun, ini hanya benar dalam larutan. Untuk wujud padatnya faktor lain harus ikut diperhatikan.
Sebagai rangkuman, struktur senyawa karbon terutama ditentukan oleh keadaan hibridisasi atom karbon yang terlibat. Bila banyak konformasi dimungkinkan oleh adanya rotasi di sekitar ikatan tunggal, konformasi yang paling stabil akan dipilih.
Bila molekulnya memiliki sisi polar, faktor lain mungkin akan terlibat. Interaksi tarik menarik antara sisi positif dan negatif akan mengakibatkan struktur dengan halangan sterik terbesar lebih stabil. Dalam kasus asam salisilat, ikatan hidrogen antara gugus hidroksi dan karboksi akan membuat struktur yang lebih rapat lebih stabil.
Sebagai kesimpulan, struktur senyawa karbon dapat dijelaskan dengan cukup baik bila berbagai faktor dipertimbangkan.
SOAL DAN JAWABAN STRUKTUR SENYAWA KARBON
1) Apa yang dimaksud dengan analisis konformasional?
Jawab: Studi perubahan >struktur molekular yang diakibatkan oleh rotasi di sekitar ikatan tunggal
2) Apa yang dimaksud dengan isomer geometri?
Jawab: keisomeran asam fumarat dan maleat karena batasan rotasi di ikatan ganda, suatu penjelasan yang berbeda dengan untuk keisomeran optik.
3) Apa itu atom karbon asimetrik?
Jawab: Pada atom karbon pusat di asam laktat, empat atom atau gigus yang berbeda terikat.
4) Apa akibat yang akan ditimbulkan dari interaksi tarik menarik antara sisi positif dan neatif?
Jawab: akan mengakibatkan struktur dengan halangan sterik terbesar lebih stabil.
5) Faktor apa saja yang harus dimengerti dalam mempelajari struktur senyawa karbon?
Jawab: yaitu harus memperhatikan dan mempelajari struktur molekul dan segala yang berhubungan dengan stuktur molekul dan struktur senyawa karbon.
Sumber: www.chem-is-try.org